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Abstract—This paper deals with the application of variational principles in the study of heat conduction

through the flat plate in the quasi-stationary regime of the heating agent temperature variation; the study

deals with the variable regime during the period preceding the quasi-stationary heating generalization

throughout the plate. The new solution to the problem is expressed by two relations. The author has
contributed to the tackling of this problem.

1. INTRODUCTION

IN QuAsI-stationary thermal conduction the tempera-
ture of the hot medium increases with a constant
velocity. If an infinite value of the heat transfer
coefficient is admitted, the heated surface of the plate
takes the temperature of the medium, while heating
of the insulated surface is delayed. At the beginning,
a variable temperature difference appears between the
two sides of the plate; after some time, the temperature
increases uniformly in all points of the plate, while
the temperature difference between the two surfaces
has a maximum value and is constant.

This paper presents a variational treatment of
quasi-stationary heat transfer throughout a plate,
based on the concept of a thermal potential, dissi-
pation function and generalized thermal force.

Based on the author’s investigations, a computation
relation of the time required for heat to penetrate
through the flat plate is proposed; a computation
relation of the temperature on the insulated surface
of the plate is also proposed. The results are rendered
by two simple physical relations, that enable a fast
evaluation of the implications of this temperature
variation on the surfaces of a plate.

2. HEAT PENETRATION IN THE PLATE

Consider a plate of thickness s with constant
thermal conductivity 4, specific heat ¢, and density p.
The plate is initially at temperature § = 0. One surface
of the plate (i), located at x = 0, is quasi-stationary
heated at a velocity v; the other surface (¢) at x = s is
thermally insulated. The temperature distribution is
shown in Fig. 1.

The heating process is divided into three phases as
shown in Fig. 2. In the first phase (1) it is assumed
that the heat has penetrated to a depth x =gq,,
smaller than the thickness s and that the temperature
distribution is well approximated by the expression

F1G. 1. Temperature distribution in a flat plate quasi-
stationary heated and insulated at x = 5.

FI1G.2. Phases of the heating process and surface temperature
variations.

9 xY
= vt(l - Z). (1)

This parabolic approximation is shown by curve (I)
in Fig. 1. The penetration depth g, is a generalized
coordinate to be determined as a function of time.
Since this is a one-dimensional problem it is sufficient
to consider a cylinder of unit cross-section of axis
perpendicular to the wall.

2.1. Dimensional analysis

For the variational treatment of heat transfer
through the flat plate it is necessary to know the
relation between the descriptive parameters q, = f{(t,
A, ¢, p, vt); the form of this relation can be established
by dimensional analysis. The relation can be written
in the form
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NOMENCLATURE
a thermal diffusivity, A/cp S surface
b, d, e, h,j physical quantity exponents t time
¢ specific heat v velocity
D dissipation function V  thermal potential
H heat displacement x  coordinate.
H local rate of heat flow per unit area,
(CH/8q)-(0q,/0t);, (0H[3q,)-(dq./01) Greek symbols
k non-dimensional numerical factor 6  temperature
L, T, M, Q fundamental physical quantities ©® fundamental physical quantity
4, depth A thermal conductivity
4, dq,/0t g density.
qs temperature
g, dq,/0t Subscripts
0,0, generalized thermal force e  external
r numerical factor i internal.
s thickness
= ki*14c® i 4,
41 ktlcpk(vt) 2 V=_1_CPJ‘ 02dx=—1—k2-c—€—vzqf. (®)
where the physical quantity exponents b, d, ¢,. .., and 27k 10" a

the non-dimensional factor k are unknown. The
variable dimensional matrix for five fundamental
quantities is

q, t A c P vt
L} 1 0o -1 0 -3 0
T| 0 1 -1 0 0 0
Ml O 0 0 -1 1 0 3)
@) 0 ¢ -1 -1 0 1
gt 0 0 1 1 0 0

The dimensional equations given by matrix (3) should
be introduced in equation (2). The dimensional homo-
geneity condition of equation (2) is expressed by

-d =3 =1 (L)
b —d =0 (T)

—e +h =0 (M) @)
—d—e +j=0 (©)
d +e =0 ©)

The solution of this determinate system of equations
is

1 1 .
b=d—5, c—h——i, j=0. 5)
Equation (2) takes the form
g, = k/(at) 6)

since @ = A/cp.
Now, equation (1) becomes

2
0=kgiu(1 —i)z‘ )
a q

With the value of equation (7), the thermal potential
is

The heat displacement H is derived from the temperat-
ure # by using the law of energy conservation
¢p8 = —div H, which in this case becomes

dH
By taking into account the condition H =0atx = ¢,
we obtain

< 1 i
H= k;ev(iqf —g¥x + q,x* — §x3>. (10)

The dissipation function is

q
p=L

~31), (n

- I ,¢ .
HZdX=T5k2;§-v"q?q§

where the vector takes the expression

. _OH d8q,

oH

3q, ot aq

The generalized thermal force @, is obtained by
considering the virtual heat displacement

6H = k%vq%éq,

at x = 0. In conformity with the variational method,
we can write
Q,0q, = vté6H (12)

hence

Q1 = kgt (13)
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The equation for the unknown Lagrangian coordinate
q, is

v oD
aql aQ1 Ql ( )
Substitution of equations (8), (11} and {13) yields
| I |
LS =34 (15)

This is a first-order equation with the time differential
g,. With the initial condition ¢, = 0 at ¢t = 0, we find

g% = 3at. (16)

The first phase ends when g; = s at a time ¢ equal to

02% 17
t, =02—.

L =022 an
This transit time measures the period required for
heat to penetrate through a thickness s of a given
material,

3. TEMPERATURE VARIATION AT THE
INSULATED SURFACE

In the second phase (2), corresponding to time
t > t,, the temperature rises at the insulated boundary
x = 5. The temperature in this phase is also assumed
to be well represented by a parabolic approximation

2
8= (Ut — Uty — 42)(1 - g‘) + g5 (18)

This is illustrated by curve (II) in Fig. 1. The general-
ized coordinate ¢, is the unknown temperature at the
boundary x = s. With the value of 8 from equation
(18), the thermal potential is

D SO PO 202 _ 2
V—2cpJ;9 dx—30cps[3v (t* — 1))

+ dog,(t —t,) — 6071, +89%). (19)

The heat displacement H is obtained by integrating
¢pf = —OH/0x; assuming for 8 the value given by
equation (18) and the boundary condition H =0 at
X =5, to give

Y.
H= cp[(vt — vty — qz)(s—z‘szx—) + gafs — x)]. (20)

In this case, the vector H takes the form

2y

The generalized thermal force @, is obtained by con-
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sidering the virtual heat displacement oH =
(2/3)cpsdg, at x = 0. In conformity with the vari-
ational method

Q20q; = vt — 1,)0H 22)

hence

Q: = Sepustt — 1,) 23)

By introducing equations (19}, (21) and (23) in the
Lagrangian equation

v oD
—+ = 24
a q2 F} qz Q2 ( )
is obtained the following linear differential equation
for g5

17 ¢,
G+ pogh— N -t)=0 (2
where t, is the transit time, equation (17). By integrat-
ing equation {(25) with the initial value g, =0 for
t =t,, one obtains

_ -t-‘-) +ot—30t,.  (26)

1

q, = 2ut, expO.S(l

4. QUASI-STATIONARY RISE OF THE
TEMPERATURE

In the third phase (3), the temperature will increase
uniformly at all points of the flat plate with velocity
v; the temperature difference 6, — 8, will take the
maximum value.

The temperature field in the plate is described by
the Fourier differential equation which, in the absence
of the inner heat sources, has the form

2%
a-—s =0 27

pw: @7
written in Cartesian coordinates and considering one-
dimensional heat transmission; its general solution is
known and has the form

0= %xl + kyx + k. (28)

To determine the constants k, and k,, two conditions
will be necessary; 8 = 6, at x = 0 and constant k, = 6,
the heat passing throughout surface i during the
time unit leads to the uniform increase of the plate
temperature; therefore

00 00
— A8 <a)x=0 = psS P (29)
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the constant k; = —sv/a. Hence, the temperatures of
the two surfaces will have the values

(30)

5. CONNECTION OF THE TEMPERATURES OF
PHASES (2) AND (3)

At the moment t,, the temperature difference
8, — q, from the end of phase (2) has the maximum
value

vs?
(93 - qZ)mnx = 31)!1 = 06'}" (31)
considering equation (17). This difference must be
equal to the constant temperature difference from

phase (3)
2
0, —6,=05"" (32)

a

A distinction exists between equations (31) and (32}
expressed by the ratio r = 0.5/0.6; equations (17) and
(26) must be modified; thus

52
7 = 0.167— (33)

ie.
o=t — rvt,[3 - 26Xp0.5(1 - 2‘—)] (34)
1

Time t, is obtained from the relation 6, — 0, =
0, — ¢% which has the form

vs? _ b
5= rutl[3 2exp0.5(1 11)] 35

and admits the solution ¢, = oo.

REFERENCES

1. R. Pich, Die Berechnung der elastischen, instationdren
Wiirmespannungen in Platten, Hohlzylinder und Hohlku-
geln mit quassistationdren Temperaturfeldern, Mitt.
Verein. Grosskesselbesitzer 87, 373-383 (1963).

C. L Staicu

2. A.M. Biot, Variational Principles in Heat Transfer. Claren-
don Press, Oxford (1970).

3. C. L Staicu, Nouvelle théorie basée sur I'expérimentation
du transfert de la chaleur, Proceedings of the 4th Inter-
national Heat Transfer Conferensey Vol. 8, paper MT 1.8.
Elsevier, Amsterdam (1971).

4. C. 1. Staicu, Restricted and General Dimensional Analysis.
Abacus Press, Tunbridge Wells, Kent, U.K. (1982).

5. C. L Staicu, Temperaturverteilung in einer ebenen dicken
Platte, Brennst.— Warme—Kraft 35, 110-112 (1983).

APPENDIX

Application

As an application, one may consider a steel plate with a
thermal diffusivity a = 3.42em?min~?; the choice is based
on the fact that this material is widely used in the building
of machines subjected to high temperatures; the thickness of
the flat plate is s = 16cm and the velocity v = 3°Cmin ™,

On the basis of the results of equation (17) 1, = |Smin;
the temperature §; is given by equation (30),; from equation
(34) the temperature ¢} may be calculated. In Table Al, the
computed values of the temperatures are presented, for
different values ¢ > t, = 15min.

Table Al. Temperature values in a

flat plate

t 6 q3 b — 43

(min) (°C)  (°C} Q)
25 735 16.24 58.76
45 135 50.09 84.91
65 195 96.66 98.34
95 285 17771 107.29
125 375 26442 110.58
225 675 56257 11233
425 1275 116250 11236

The numerical calculus shows that phase (2) practically
ends after a finite time, when the temperature difference 8; —
4% takes the maximum value vs*/2a = 112.3°C from phase

(3.

ETUDE VARIATIONNELLE DE LA CONDUCTION THERMIQUE QUASISTATIONNAIRE
DANS DES PLAQUES PLANES

Résumé—On présente I'application des principes variationnele & P'étude de la conduction de la chaleur

dans la plaque plane, quand la température du fluide chauffant varie en régime quasistationnaire; I'étude

concerne le régime variable qui précéde I'échauffement quasistationnaire de la plaque entiére. La nouvelle

résolution de ce probléme conduit & des relations physiques simples. Quelques contributions originales
de P'auteur, ont été utilisées 4 la résolution du probléme.

VARIATIONELLES STUDIUM DER QUASISTATIONAREN WARMELEITUNG DURCH DIE
FLACHEN PLATTEN

Zusammenfassung—Es wird die Anwendung variationiller Prinzipien beim Studium der Wirmeleitung

durch die flache Platte, im Falle quasistationirem Temperaturschwankungsregim der erwdrmenden

Fliissigkeit, dargestellt; das Studium bezieht sich auf das variable Regime welches der Verallgemeinerung

der quasistationiren Erwirmung in allen Punkten der Platte vorangeht. Die neue Losung dieser Frage

konkretisiert sich durch einfache Berechnungsgleichungen. Bei der Behandlung dieses Problems hatte such
der Verfasser eine personlichen Beitrag.
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NMPUMEHEHUE BAPUALIMOHHBIX NMPUHLMIIOB 114 OITUCAHUA
KBA3ZUCTALHMOHAPHOI'O INNEPEHOCA TEIUIA YEPE3 IJIOCKHE MJIACTHUHbBI

Aunsoraums—PaccMmaTpuBaeTcs NPUMEHEHHE BapHALMOHHBIX IPHHUMIIOB [UIS ONMHCAHMUA MEpesHoca Temna

Yepe3 IUIOCKYIO IUIACTHHY TpPH KBa3HCTAIIHOHADHOM PEKHME H3MEHEHHS TEMIMEpaTyphl TEIJIOBOro

arenTa. MccnenyeTca pexuM, NpeliecTBYIOIHHA YCTaHOBICHUIO KBa3HCTallMOHapHOro Harpesa. [Tony-
4EHO HOBOE PELIEHHE 3a4a4H, IPEACTABICHHOE B BHAE ABYX COOTHOILEHHH,



