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Abstract-This paper deals with the application of variational principles in the study of heat conduction 
through the flat plate in the quasi-stationary regime of the heating agent temperature variation; the study 
deals with the variable regime during the period preceding the quasi-stationary heating generalization 
throughout the plate. The new solution to the problem is expressed by two relations. The author has 

contributed to the tackling of this problem. 

1. INTRODUCTION 

IN quAsr-stationary thermal conduction the tempera- 
ture of the hot medium increases with a constant 
velocity. If an infinite value of the heat transfer 
coefficient is admitted, the heated surface of the plate 
takes the temperature of the medium, while heating 
of the insulated surface is delayed. At the beginning, 
a variable temperature difference appears between the 
two sides of the plate; after some time, the temperature 
increases uniformly in all points of the plate, while 
the temperature difference between the two surfaces 
has a maximum value and is constant. 

This paper presents a variational treatment of 
quasi-stationary heat transfer throughout a plate, 
based on the concept of a thermal potential, dissi- 
pation function and generalized thermal force. 

Based on the author’s investigations, a computation 
relation of the time required for heat to penetrate 
through the flat plate is proposed; a computation 
relation of the temperature on the insulated surface 
of the plate is also proposed. The results are rendered 
by two simple physical relations, that enable a fast 
evaluation of the implications of this temperature 
variation on the surfaces of a plate. 

2. HEAT PENETRATION IN THE PLATE 

Consider a plate of thickness s with constant 
thermal conductivity 1, specific heat c, and density p. 
The plate is initially at temperature 0 = 0. One surface 
of the plate (i), located at x = 0, is quasi-stationary 
heated at a velocity u; the other surface (e) at x = s is 
thermally insulated. The temperature distribution is 
shown in Fig. 1. 

The heating process is divided into three phases as 
shown in Fig. 2. In the first phase (1) it is assumed 
that the heat has penetrated to a depth x = ql, 

smaller than the thickness s and that the temperature 
distribution is well approximated by the expression 

e 

FIG. 1. Temperature distribution in a flat plate quasi- 
stationary heated and insulated at x = s. 

FIG. 2. Phases of the heating process and surface temperature 
variations. 

e=ot 1-g. ( > 
This parabolic approximation is shown by curve (I) 
in Fig. 1. The penetration depth q1 is a generalized 
coordinate to be determined as a function of time. 
Since this is a one-dimensional problem it is sufficient 
to consider a cylinder of unit cross-section of axis 
perpendicular to the wall. 

2.1. Dimensional analysis 

For the variational treatment of heat transfer 
through the flat plate it is necessary to know the 
relation between the descriptive parameters 4, = f(t, 

I, c, p, vt); the form of this relation can be established 
by dimensional analysis. The relation can be written 
in the form 
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QI,Qz 
r 
s 

thermal diffusivity, A/cp 
physical quantity exponents 
specific heat 
dissipation function 
heat displacement 
local rate of heat flow per unit area, 

(~~/~9). @cl Jdtf; @ff/&,)~ @92/W 
non-dimensional numerical factor 
fundamental physical quantities 
depth 

agi/ar 
temperature 

aq,/ar 
generalized thermal force 
numerical factor 
thickness 

S surface 
t time 
V velocity 
V thermal potential 
x coordinate. 

Greek symbols 
6 temperature 
0 fundamental physical quantity 
A thermal conductivity 

P density. 

Subscripts 
e external 
i internal. 
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q1 = kt’L*c=p’yvt)j (2) 

where the physical quantity exponents b, d, e, . , . , and 
the non-dimensional factor k are unknown. The 
variable dimensional matrix for five fundamental 
quantities is 

q, t 1 c p vt 

L 1 0 -1 0 -3 0 
T 0 1 -1 0 0 0 
MO 0 o-1 10. (3) 

0 -1 -1 0 
;: 0 110: 

The dimensional equations given by matrix (3) should 
be introduced in equation (2). The dimensional homo- 
geneity condition of equation (2) is expressed by 

-d -3h =I (I;) 
b -d =o (T) 

-e +h =0 W (4) 
-d -e +j =o @I 

d+e =0 (Q) 
The solution of this determinate system of equations 
is 

b&;, c=h= -- 
2’ 

j = 0. (5) 

Equation (2) takes the form 

qi = k&r) (6) 

since a = A/cp. 
Now, equation (1) becomes 

With the value of equation (7), the thermal potential 
is 

v= fcp 
‘II s 02dx= ik2zv2q:. (f-9 

0 

The heat displacement H is derived from the temperat- 
ure @ by using the law of energy conservation 
cpt? = -div H, which in this case becomes 

dH 
cp6 = -dx. (9) 

By taking into account the condition H = 0 at x = ql, 
we obtain 

H = k$ fq: - qfx + q,x2 - $x3 
> 

. WY 

The dissipation function is 

where the vector takes the expression 

The generalized thermal force Qi is obtained by 
considering the virtual heat displacement 

6H = kzvq;Sq, 

at x = 0. In co~o~ity with the va~ational method, 
we can write 

Q,Sq, = vt6H (12) 

hence 

Q1 = k2zv2q;. (13) 



The equation for the unknown Lagrangian coordinate sidering the virtual heat displacement 6H = 

q1 is (2/3)&q, at x = 0. In conformity with the vari- 

av aD 
ational method 

+-=Qt. dq, a41 
(14) 

Q& = o(t - WH (22) 
Substitution of equations (S), (11) and (13) yields hence 

2 
Q2 = -cpos(t - cl). 

3 (23) 

This is a first-order equation with the time differential 
ql. With the initial condition q1 = 0 at t = 0, we find By introducing equations (19), (21) and (23) in the 

q: = Sat. (16) 
Lagran~an equation 

The first phase ends when q1 = s at a time t equal to aV+!!!=Q* 
aq2 84, 

(24) 

“2 
tl = 0.2;. (17) is obtained the following linear differential equation 

for q2: 
This transit time measures the period required for 
heat to penetrate through a thickness s of a given 17 t, 

material. 92+~@42-D(t-tl)=O (25) 

where t, is the transit time, equation (17). By integrat- 

3. TEMPERATURE VARIATION AT THE ing equation (25) with the initial value q2 = 0 for 

INSULATED SURFACE t = t 1, one obtains 

In the second phase (2), corresponding to time 
t > t,, the temperature rises at the insulated boundary (26) 
x = s. The temperature in this phase is also assumed 
to be well represented by a parabolic approximation 

+ q2. (18) 
4. QUASI-STATIONARY RISE OF THE 

TEMPERATURE 
This is illustrated by curve (II) in Fig. 1. The general- 
ized coordinate q2 is the unknown temperature at the In the third phase (3), the temperature will increase 

boundary x = s. With the value of 0 from equation uniformly at all points of the flat plate with velocity 

(18), the thermal potential is u; the temperature difference Bi - 6, will take the 
maximum value. 

V= ;c~ 
s 

%dx= $ps[3v2(t2 - t:) 
The temperature field in the plate is described by 

0 the Fourier differential equation which, in the absence 

+ 4vq,(t - ti) - 6u2tt, -t 8q;]. (19) 
of the inner heat sources, has the form 

The heat displacement H is obtained by integrating a28 
(27) 

cp6 = -al-Z/&; assuming for 0 the value given by aax2=V 
equation (18) and the boundary condition H = 0 at 
x = s, to give written in Cartesian coordinates and considering one- 

dimensional heat transmission; its general solution is 
known and has the form 

H = cp (vt - vtl - q2)@$ + q2(s - x)]. (20) 

In this case, the vector H takes the form 

The dissipation function is 

=%f!f$$. 
315 a 2 

The generalized thermal force Q2 is obtained by con- 

the heat passing throughout surface i during the 
time unit leads to the uniform increase of the plate 
temperature; therefore 

(21) 

-1s E 0 ax x=n 
= cpss;; 

. ,- - 
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B = &x2 + kxx + k,. (28) 

To determine the constants k, and k2, two conditions 
will be necessary; 0 = Bi at x = 0 and constant kz = Bi; 
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the constant k, = -sv/a. Hence, the temperatures of 
the two surfaces will have the values 

5. CONNECTION OF THE TEMPERATURES OF 

PHASES (2) AND (3) 

At the moment tz, the temperature difference 
ei - q2 from the end of phase (2) has the maximum 
value 

(ei - q2jmax = 3vt, = 0.6: 

considering equation (17). This difference must be 
equal to the constant temperature difference from 
phase (3) 

(32) 

A distinction exists between equations (31) and (32) 
expressed by the ratio r = 0.5/0.6; equations (17) and 
(26) must be modified; thus 

s2 
t’: = 0.167- 

a (33) 

i.e. 

q~=vt-rvt,[3-2exp0.5(1-J-)]. (34) 

Time t2 is obtained from the relation f& - es = 
Bi - 4’;: which has the form 

g=mf,[3-ZexpOS(1 --:)I (35) 

and admits the solution t, = cc). 
125 375 264.42 110.58 
225 675 562.51 112.33 
425 1275 1162.50 112.36 
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APPENDIX 

Application 
As an application, one may consider a steel plate with a 

thermal diffusivity a = 3.42 em’min-i; the choice is based 
on the fact that this material is widely used in the building 
of machines subjected to high temperatures; the thickness of 
the flat plate is s = 16cm and the velocity r L 3°C min- r. 

On the basis of the results of equation (17) t, = 15 mm; 
the temperature Bi is given by equation (30),; from equation 
(34) the temperature q? may be. calculated. In Table Al, the 
computed values of the temperatures are presented, for 
different values t > t, = 15min. 

Table Al. Temperature values in a 
flat plate 

t 4 

(min) (“C) 

25 75 

4 - q’; 
(“C) 

16.24 58.76 
45 135 50.09 84.91 
65 195 96.66 98.34 
95 285 177.71 107.29 

ETUDE VARIATIONNELLE DE LA CONDUC’I’ION THERMIQUE QUASISTATIONNAIRE 
DANS DES PLAQUES PLANES 

R&nrn-On presente l’application des principes variationnele a l’btude de la conduction de la chaleur 
dans la plaque plane, quand la temperature du fluide chauffant varie en regime quasistationnaire; I’ttude 
concerne le @ime variable qui p&&de l’tchauffement quasistationnaire de la plaque entiere. La nouvelle 
resolution de ce probleme conduit B des relations physiques simples. Quelques contributions originales 

de l’auteur, ont &tC utilisees a la resolution du probleme. 

VARIATIONELLES STUDIUM DER QUASISTATION~REN W~RMELEITUNG DURCH DIE 
FLACHEN PLAITEN 

Zusammenfaasung-Es wird die Anwendung variationaller Prinzipien beim Studium der Warmeleitung 
durch die flache Platte, im Falle quasistationlrem Temperaturschwankungsregim der erw;irmenden 
Fliissigkeit, dargestellt; das Studium beaieht sich auf das variable Regime welches der Verallgemeinerung 
der quasistationiiren Erw%nmng in allen Punkten der Platte vorangeht. Die neue Losung dieser Frage 
konkretisiert sich durch einfache ~r~hnun~s~eichunge~ Bei der ~handlung dieses Problems hatte such 

der Verfas&-eine per&lichen Beitrag. 
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I-IPMMEHEHME BAPWAqWOHHbIX l-IPMH~Ml-IOB QJIR OrNiCAHMII 
KBA3ACTA~MOHAPHOT0 IIEPEHOCA TEl-lJIA ‘4EPE3 l-IJIOCKME l-lJIACTkiHbI 

AHHOTara-PaccMaTpaBaeTcr npkrhteziemie BapHaUHOHHbIX llpHHUHllO8 nnR OnHCaHHn nepeHoca Tenna 
‘tepe3 IUlOCKyMJ IlJlaCTLiHy IIpH KBa38CTaUROHaPHOM PGiWMC H3MeHCHHR TCMI'IepaTypbt TNUIOBOrO 

arena. Mccnenye-rca pesuhl, npenmecraylomHB ycTaHoaneHmo Kaa3kicTamioHaptioro riarpeea. llony- 
YCHOHOBOepCulCHIlC3aAa9~,n~ACTaBneHHOCBB~AeAByXCOOTHO~CH8ii. 


